

An Introduction to Underfloor Air Distribution (UFAD)

20 East End Avenue Luxury Tower New York, New York

New Low Cost Stainless Steel Linear Grille UFAD Systems & Products

Kansas City, Kansas

- 1. 20 years experience, every building type
- 2. 1000+ projects, 1000+ million sq.ft.
- 3. 26 countries, every climate type
- 4. Over 100 million sq. ft. installed
- 5. By far the broadest product line in the world
- 6. Comprehensive design support, advanced R&D
- 7. More application experience than anyone
- 8. Lower cost, technically advanced systems
- Controls, flooring and HVAC system coordination
- 10. On-site project management by AFX engineers

Today's Topics

- Basic UFAD
- UFAD Benfits
 - -SoHo
 - -QT-35
- -Prestige(wireless diffuser)

Conventional Overhead (Mixing Systems)

Indoor Air Handling Unit

Air Flow: Mixing Systems vs. Stratified Systems

- Improved Flexibility for building services
- 2. Achieve cost effective LEED certification
- 3. Improved Ventilation Efficiency and indoor air quality
- 4. Improved occupant Comfort, Productivity and Health
- 5. Reduced energy use
- 6. Reduced first & Life-cycle costs
- 7. Reduce slab-to-slab heights & façade costs

- Reduction in overhead duct work leads to taller ceilings
- Increased windows sizes improve day-lighting and views
- Reduce slab-to-slab height
- Reduced run lengths
- Promotes reuse of materials
- Wire & cable only where it is needed
- Reduced ductwork
- Eliminate drop-ceiling

High Performance & Material Efficiency Benefits

Sustainable, High Performance, Better Value!

Strategies	Daylighting	IAQ	Flexibility	Energy	Water	Material	Life-Cycle Cost	Total
Slab-to-Slab Thermal Glazing	✓			✓			✓	3
Lighting System Controls	✓			✓			✓	3
Modular Walls & Furniture			✓			✓	✓	3
Green Roofs				✓			✓	2
Rainwater Collection/Reuse					✓		✓	2
Ergonomic Seating							✓	1
Sound Masking							✓	1
Underfloor Service Distribution	✓	√	✓	✓		✓	✓	6

Comparing Strategies

63-64 degrees F = Savings

- **▲ UFA Reduced fan HP by 30%-50%**
- **▲** More opportunity for Economizer usage

Lower Horsepower = Energy Savings

HP or KW = air flow x static pressure/C

with 20% decrease in supply air due to return air load transfer, 10% increase due to increased supply air temp, and 1.5 in. decrease in static pressure:

HP or KW = $(0.8 \times 1.1) \times (2.25/3.75)/C = 53\%$

30 - 50 % HP or KW reduction

ASHRAE 62.1.2.1 – 2019

Stratified Air Distribution Systems (Section 6.2.1.2.1)						
Floor supply of cool air where the vertical throw is greater than or equal to 60 fpm (0.25 m/s) at a height of 4.5 ft (1.4 m) above the floor and ceiling return at a height less than or equal to 18 ft (5.5 m) above the floor	1.05					
Floor supply of cool air where the vertical throw is less than or equal to 60 fpm (0.25 m/s) at a height of 4.5 ft (1.4 m) above the floor and ceiling return at a height less than or equal to 18 ft (5.5 m) above the floor						
Floor supply of cool air where the vertical throw is less than or equal to 60 fpm (0.25 m/s) at a height of 4.5 ft (1.4 m) above the floor and ceiling return at a height greater than 18 ft (5.5 m) above the floor	1.5					

AirFixture°

Finned Tube Radiators

SoHo Fan-Powered Terminals

SoHo-w

- 20 Gauge (1mm) galvanized steel trough housing, pre-painted flat black
- Threaded leveling legs for unit height adjustment
- Coils are rated in accordance with AHRI standard 410
- Supply and return water connections located on one end of the trough; custom configurations and dimensions are available
- Hot or chilled water can be passed through based on building / season demands and facility operators control
- IEQ double deflection drain pan extends under entire fin pack and headers (cooling models only)
- Trough interior (including the drain pan) is fully lined with ArmaFlex (style) flexible closed cell insulation, to prevent undesirable condensate formation
- 24VDC variable speed ECM cross-flow fans (sizes and configurations based on trough / heater length)
- Compatible with standard 24VAC Plug & Play or 120V / 208V / 230V / 277V electrical supplies
- Extruded aluminum or Stainless Steel linear grille, rated for nominal 800lbs. (363kg) load strength
- Grilles available in ten (10) standard colors; customized colors and finishes can be provided to match architectural design (specify on order)

Hydronic Fan-Powered Heating / Cooling

	DIMENSIONS		HEATING	ELECTRICAL	
LENGTH	WIDTH	HEIGHT	(BTU/h)	V	
28"	6"–16"	3.5" (Special Low Height) 4" (Standard Minimum) 8" (Standard Maximum)	4,370		
42"			9,140		
56"			11,560	120 / 208 / 230 / 277	
72"			16,380	Single Phase / 60Hz	
84"			21,500		
96"			26,680		

Hot Water T°: 140°F (60°C) | Air Inlet T°: 65°F (21°C)

Hydronic Fan-Powered Heating / Cooling

SoHo-e

- 20 Gauge (1mm) galvanized steel trough housing, pre-painted flat black
- Threaded leveling legs for unit height adjustment
- ETL listed electric heater, fully certified to UL standards (0.5–2.0KW standard, other sizes available on order)
- Single-point electrical power connection and unit-mounted disconnect
- 24VDC variable speed ECM cross-flow fans (sizes and configurations based on trough / heater length)
- Compatible with standard 120V / 230V / 277V electrical supplies
- Extruded aluminum linear grille, rated for nominal 800lbs. (363kg) load strength
- Grilles available in ten (10) standard colors; customized colors and finishes can be provided to match architectural design (specify on order)

Electric Fan-Powered Heating

SoHo electric heaters avoid the delivery of super hot air common with regular convectors, which rises straight to the ceiling. Instead, warm fan-boosted air is delivered consistently, improving comfort for room occupants.

Flexible Mounting

Sample Hydronic SoHo Wiring

Low-Profile Heating

Sample Electric SoHo Wiring

Low-Profile Heating

Design Layout Examples

Low-Profile Heating

SoHo Slim Low Boy Fan-Powered Linear Terminal

- Available in a variety of 20-gauge galvanized steel housings
- We offer a range of unique shapes and air intake opening patterns
- Manufactured-to-order to meet the dimensional and performance specifications of each individual project.
- Designed to blend seamlessly and compliment the aesthetics of an architectural space.

SoHo Slim Lowboy Fan-Powered Linear Terminal

Designer Color Finishes

SoHo Slim Lowboy terminals are available in a wide selection of unique color finishes, carefully selected to compliment the latest trends in modern interior design. Additionally, custom color selections are available to match an Architect's unique requirements for a project (specify on order; custom colors may require an additional fee).

QT-35 Downflow Air Handling Unit UFAD Systems & Products

System 5: CV diffusers everywhere, with supply airway partitions containing different and appropriate air temps for each affected zone. Column mixing units are often included.

Advantages: No underfloor obstruction, ability to vary underfloor air temp by exposure, use of low temp outside air (ideal for tall buildings)

Typical UFAD
System Designs

Mechanical First Cost Can be less than traditional overhead VAV

COST ANALYSIS OF A 900,000 SF PROPOSED OFFICE BUILDING

UFAD Cost Model

Major Cost Difference Between Overhead Air and Underfloor Air

Base Budget Breakout	Traditional Overhead Air Distribution			Underfloor Air Distribution			Cost Difference	% Difference
	C&S	TI	Total	C&S	TI	Total	cost billerence	70 Difference
HVAC Piping	\$2,398,874	\$0	\$2,398,874	\$2,555,144	\$0	\$2,555,144	\$156,270	
Sheet Metal	\$4,993,857	\$3,139,176	\$8,133,033	\$1,451,201	\$0	\$1,451,201	(\$6,681,832)	
HVAC Equipment	\$7,313,921	\$1,429,235	\$8,743,156	\$7,048,490	\$2,865,568	\$9,914,058	\$1,170,902	
Raised Access Floor	\$0	\$0	\$0	\$414,879	\$5,360,155	\$5,775,034	\$5,775,034	
HVAC Subcontractors	\$2,607,720	\$1,938,901	\$4,546,621	\$2,532,779	\$232,235	\$2,765,014	(\$1,781,607)	
TOTAL	\$17,314,372	\$6,507,312	\$23,821,684	\$14,002,493	\$8,457,958	\$22,460,451	(\$1,361,233)	-5.7%

Savings/SF 900,000 sft (\$1.51)

COST REDUCTIONS

Sheet metal

Test & Balance

Controls

BIM Coordination

COST ADDS

Piping

Raised Floor

Air Towers

Developer Cost Savings

How do you fit seven stories into a six-story space?

(Hint... the answer is **UFAD!**)

Stay Low-Rise: Turning Six Stories into Seven!

Stay Low-Rise: Turning Six Stories into Seven!

Developer Cost Savings

COST REDUCTION

12" Reduction in Floor to Floor Building Height:

• Cost PSF of Façade ≈ \$125

Includes windows, steel, concrete, paint, drywall

Assuming a 10 story, 200,000 SF builing, first cost savings can be ≈ \$75,000/Floor * 10 = \$750,000

NET RENTABLE SPACE SAVINGS

- Air Towers can cut in half the mech room required
- •Resulting in up to a 10% reduction in the BOMA Loss Factor for a building
- •- For every 150 sf returned as net rentable SF, for a typical 20,000 SF floor plate, there is an annuity of \$.30 psf PER YEAR

Building Valuation (Simplified) I = p * s * h Where:

I = revenue from the sale of property

P = the price of 1 sf of useable floor area

S = the useable area of one floor

H = the number of floors

Completely Wireless!!

NEW products

Prestige wireless diffusers

Completely Wireless!!

Prestige Features:

- Thermostat Controlled Motorized Diffuser Plate
- User-Controlled Manual Damper
- Unobstructed Zones of Over 300 feet
- Up to 32 Diffusers per Concentrator
- Projected 10-year Battery Life (Ultra-Low Power Consumption)
- 5 years Parts and Labor Warranty
- Ships Fully Assembled; Quick & Easy Install

System 17: Drop-in VAV cooling with wired power and controls.

System 18: Drop-in VAV cooling with wired power / wireless controls.

System 19: Drop-in VAV cooling with fully wireless power and controls.